Nanomaterials Chemistry and Engineering

The Holmberg research group is devoted to the development and study of new functional nanomaterials that have the potential to be produced in a scalable and cost-effective manner. We focus on inorganic nanostructures, such as nanowires and nanocrystals, synthesized via scalable solution-based and supercritical fluid-based processes, with an emphasis on nanomaterial growth, assembly, and integration. A portion of our laboratory is currently devoted to the development and study of new types of flexible, high-rate, high-capacity battery materials, with the remainder focused on magnetic, plasmonic, and photonic nanomaterials.

cheme_holmbergcollage

  Lab Photo

Nanostructured Electrode Materials for Electrochemical Energy Storage

We have significant emphasis on the development and study of nanostructured alloying electrode materials for Li-ion and Na-ion batteries – working to better understand and control the phase transformations, interfacial reactions, and other fundamental process that occur when you charge and discharge a battery, and studying the effects of chemical additives, controlled surface chemistry, and engineered electrode morphology – in an effort to improve energy storage capacity, charge/discharge rates, and battery longevity. Please visit the UW Clean Energy Institute (UW CEI) for more information regarding campus-wide research efforts in clean energy!

High-Res 

Recent Publications on Electrode Materials for Electrochemical Energy Storage

 

Pandres, Elena P.; Olson, Jarred Z.; Schlenker, Cody W.; Holmberg, Vincent C., Germanium Nanowire Battery Electrodes with Engineering Surface-Binder Interactions Exhibit Improved Cycle Life and High Energy Density without Fluorinated Additives. ACS Applied Energy Materials (2019), 2(9), 6200-6208. [Link]

 

 

Williamson, Grant; Hu, Victor W.; Yoo, Thomas B.; Affandy, Martin; Opie, Charles; Paradis, Emilee K.; Holmberg, Vincent C., Temperature-Dependent Electrochemical Characteristics of Antimony Nanocrystal Alloying Electrodes for Na-Ion Batteries. ACS Applied Energy Materials (2019), 2(9), 6741-6750. [Link]

 

 

Defect Engineering in Luminescent and Plasmonic Nanostructures

While most people might consider defects to be a bad thing, when carefully controlled and engineered properly, they can actually be a powerful tool for controlling the physical properties of materials. Through our NSF MRSEC-funded University of Washington Molecular Engineering Materials Center (UW MEM-C), we are working to engineer functional nanomaterials by directing defect formation through morphological and compositional control. Please visit the UW MEM-C website for more information!

Nanostructures

 

Recent Publications on Luminescent and Plasmonic Nanostructures

 

Kastilani, Ryan; Bishop, Brittany P.; Holmberg, Vincent C.; Pozzo, Lilo D., On-Demand Sonochemical Synthesis of Ultrasmall and Magic-Size CdSe Quantum Dots in Single-Phase and Emulsion Systems. Langmuir (2019), 35(50), 16583-16592. [Link]

 

 

 

 

Zhang, Mengying; Bishop, Brittany P.; Thompson, Nicole L.; Hildahl, Kate; Dang, Binh; Mironchuk, Olesya; Chen, Nina; Aoki, Reyn; Holmberg, Vincent C.;* Nance, Elizabeth,* Quantum Dot Cellular Uptake and Toxicity in the Developing Brain: Implications for Use as Imaging Probes. Nanoscale Advances (2019), 1, 3424-3442. [Link] *co-corresponding*

 

 

Recent Publications on Nanomaterial Assembly

 

Crane, Matthew J.; Pandres, Elena P.; Davis, E. James; Holmberg, Vincent C.;* Pauzauskie, Peter J.,* Optically Oriented Attachment of Nanoscale Metal-Semiconductor Heterostructures in Organic Solvents via Photonic Nanosoldering. Nature Communications (2019), 10, 4942. [Link] *co-corresponding*

You can watch videos of the trapping and assembly processes here and here.

 

 

Assembly